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Research

A number of neurotoxic environmental conta-
minants, recognized as endocrine disruptors,
have aroused much interest in the field of
neuroendocrinology (Pillai et al. 2003). In par-
ticular, polycyclic aromatic hydrocarbons, poly-
chlorinated biphenyls, and many heavy metals
such as arsenic, cobalt, and mercury in the
organic form appear to impair growth, develop-
ment, and sociosexual behavior in vertebrates
(Beauvais et al. 2001; Bisson and Hontela
2002). Cadmium is one of the heavy metals
that pose an increasing health threat to ecologic
communities and humans (Harvey et al. 1999).
Because of widespread industrial applications
such as the use of alloys for metal coatings and
nickel-cadmium batteries as well as the burning
of fossil fuels, urban traffic, and waste incinera-
tion, this pollutant is emitted into the atmos-
phere (Liao and Freedman 1998). It is taken up
readily by humans and other mammals not
only via inhalation but also via the food web
(Waalkes et al. 1992). By binding to cysteine
residues or generating reactive oxygen species
(Risso-de Faverney et al. 2001), Cd has been
shown to influence genomic and postgenomic
processes in liver, kidney, lung, and brain
(Minami et al. 2001). Similar alterations appear
to be linked with neuronal dysfunctions in the
hypothalamic–pituitary–testicular axis and
inadequate neurosecretory activities of pituitary
cells (Lafuente et al. 2001). Interestingly, these
same degenerative processes in the preferential

brain region, that is, the olfactory bulb, appear
to corroborate evidence that foraging and
aggression controlled by this region constitute
vital behaviors in fish (Griffiths and Armstrong
2000; Scherer et al. 1997).

The persistence and accumulation of the
insecticide endosulfan (6,7,8,9,10,10-hexa-
chloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-
2,4,3-benzodioxathiepin-3-oxide) in human
tissues are of concern (Martinez et al. 1997).
Its resistance to biologic degradation and its
low water solubility not only favor binding to
soil particles and persistence within surface
waters but also prompt bioconcentrations
resulting in up to 600 times ambient water
concentration in some species (Miller and
Llados 1999). The purpose of this insecticide
was to protect economically important crops
such as tobacco and cotton; little attention
was paid to neurologic risks to humans or
other animals in terrestrial and aquatic eco-
systems. Recent studies show that similar pes-
ticides alter aggressive and reproductive
behaviors in teleost fish (Carlson et al. 1998;
Roex et al. 2001) through the interference of
cerebral neuromediating systems (Clark 1997)
such as the histaminergic system. This system
is actively involved in blocking chemical-
dependent stressful conditions such as writhing
and consequently modifies responses to cold
and immobilization states (Ferretti et al. 1998;
Ito 2000).

The histamine (HA) receptor complex is
one of the main neurosignaling systems that,
in addition to “allergic” and anti-inflammatory
processes, has been recognized for its role in
many neurologic functions such as attention,
arousal, cognition, movement, and feeding 
in mammalian species (Lin et al. 1996).
Structurally, the histaminergic neuronal fibers,
originating from the hypothalamus, are pro-
jected extensively throughout the central ner-
vous system and promote their actions via
three distinct receptor subtypes denoted HnR
(H1R, H2R, H3R) (Hill et al. 1997). All but
H3R subtypes are postsynaptically located and
are coupled positively to adenylyl cyclase and
phospholipase C, whereas H3R has been iso-
lated at both the presynaptic and postsynaptic
levels (Brown et al. 2001). Recently, Spieler
et al. (1999) observed that inhibition of the
H1R site is linked to the improvement of
appetitive reversal learning and memory tasks
in the goldfish Carassius auratus—a relation-
ship that was further supported by the detec-
tion, via the application of their specific and
selective antagonists, of H3R (Peitsaro et al.
2000) and H1R (Choich et al. 2004) in brain
areas of the zebrafish Danio rerio and the
tilapia Oreochromis niloticus, respectively.
Moreover, identification of these subtypes in
other vertebrates such as amphibians and rep-
tiles (Brodin et al. 1990; Inagaki et al. 1991) is
consistent with their highly conserved profile
throughout vertebrate phylogeny (Kaslin and
Panula 2001). On the basis of the above data,
the intention of our study was to establish
whether Cd and endosulfan neurotoxicologic
effects on behavioral activities could be con-
trolled through cerebral histaminergic neu-
ronal mechanisms in the ornate wrasse. In fish,
adaptations to environmental variables, includ-
ing chemical–physical water properties such as
temperature, photoperiod, ionic balance, and
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Common environmental contaminants such as heavy metals and pesticides pose serious risks to
behavioral and neuroendocrine functions of many aquatic organisms. In the present study, we show
that the heavy metal cadmium and the pesticide endosulfan produce such effects through an interac-
tion of specific cerebral histamine receptor subtypes in the teleost ornate wrasse (Thalassoma pavo).
Treatment of this teleost with toxic cadmium levels for 1 week was sufficient to induce abnormal
swimming movements, whereas reduced feeding behaviors were provoked predominantly by elevated
endosulfan concentrations. In the brain, these environmental contaminants caused neuronal degen-
eration in cerebral targets such as the mesencephalon and hypothalamus, damage that appeared to
correlate with altered binding levels of the three major histamine receptors (subtypes 1, 2, and 3).
Although cadmium accounted for reduced binding activity of all three subtypes in most brain
regions, it was subtype 2 that seemed to be its main target, as shown by a very great (p < 0.001)
down-regulation in mesencephalic areas such as the stratum griseum central layer. Conversely, endo-
sulfan provided very great and great (p < 0.01) up-regulating effects of subtype 3 and 1 levels, respec-
tively, in preoptic-hypothalamic areas such as the medial part of the lateral tuberal nucleus, and in
the suprachiasmatic nucleus. These results suggest that the neurotoxicant-dependent abnormal
motor and feeding behaviors may well be tightly linked to binding activities of distinct histamine
subtypes in localized brain regions of the Thalassoma pavo. Key words: cadmium, diencephalon,
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pollutants (Huang et al. 2004), are involved in
the acceleration of the diandric-protogynic
physiologic state, which makes fish valuable
models for the investigation of neurologic
adaptation mechanisms (Bass and Grober
2001; Larson et al. 2003). Furthermore, the
host-cleaning symbiosis of the ornate wrasse
Thalassoma pavo not only is critical for the sta-
bility of ecosystems (Zander and Sötje 2002)
but also improves environmental conditions
for commercially valuable fish and thus makes
the ornate wrasse an important ecologic bio-
marker species.

Materials and Methods

Animals. We collected 32 young female ornate
wrasses (body weight, 20–25 g; length,
~ 16–18 cm) from the Tyrrhenian Sea; they
were acclimated to laboratory conditions for
1 week. During this period, fish were main-
tained in flow-through tanks containing 150 L
of seawater (19–21°C, pH 7.8) under a
12/12-hr light/dark photoperiod and fed daily
(10 g/kg body weight) with commercial food
(Morubel, Milan, Italy) corresponding to 2%
of biomass in the tank. Animal maintenance
and experimental procedures were in accor-
dance with the Guide for Use and Care of
Laboratory Animals (European Communities
Council Directive 1986), and efforts were
made to minimize animal suffering and reduce
number of specimens used.

Experimental treatments and behavioral
observations. In the first part of the study, fish
(n = 12) were exposed for 1 week to one of the
two concentrations of Cd (CdCl2 • 2H2O;
Sigma, Milan, Italy): a sublethal concentration
(2.26 mg/L; n = 6) or a calculated maximum

acceptable toxicant (MAT) concentration
(11.32 mg/L; n = 6), which were both less than
the 96-hr LC50 (lethal median concentration)
value of 28.68 mg/L (Giusi et al. 2004) and the
96-hr LC50 value of 20.12 mg/L obtained in
the white sea bass, Lates calcarifer (Thophon
et al. 2003). This contaminant was prepared by
dissolving CdCl2 • 2H2O in appropriate vol-
umes of seawater. Other fish (n = 12) were
exposed for the same length of time to two con-
centrations of endosulfan (Sigma): a sublethal
concentration (0.2 µg/L; n = 6) and a calculated
MAT concentration (1.3 µg/L; n = 6) that were
both less than the 96-hr LC50 value of
3.30 µg/L (Giusi et al. 2004), and the 96-hr
LC50 value varying between 1.4 and 1.5 µg/L
for freshwater fish (Johnson and Finley 1980),
sublethal and MAT concentrations that fall
within the ranges reported in surface waters
(0.039–0.205 µg/L) and after runoff water
events (0.01–1.3 µg/L) from agricultural areas,
respectively (Naqvi and Vaishnavi 1993). The
pesticide was dissolved in seawater. We com-
pared both treatment groups with controls
(n = 8) consisting of fish maintained under
identical conditions except that only vehicle was
added to the tanks. During the entire experi-
ment, accumulation of wastes and pathogens
was avoided by replacing the tanks with fresh
seawater every day. To reduce to a minimum
the stressful conditions of this operation, we
rapidly transferred the fish with a small fishing
net to the tanks containing fresh seawater and
either one of the two contaminants in an effort
to achieve the intended nominal concentra-
tions. Throughout the behavioral sessions, we
checked the feeding habits of the ornate wrasse
to ensure that the fish ingested water containing

the neurotoxicant, although the uptake of these
compounds primarily depends on their passage
through the gill system (Thophon et al. 2003).

We assessed the behavior and mortality for
all fish that received either Cd or endosulfan in
four 1-hr sessions each day for 1 week. The
motor and feeding behaviors that we analyzed
included hyperactive movements consisting in
either swimming toward the surface, swimming
in the same direction, or “bumping” into each
other or against the tank; assuming a “relaxed”
position or simply being inactive; and hyper-
ventilation, which is defined as the number of
times that the operculum opens and closes in a
1-hr observation session. We also recorded
feeding frequency and quantity (milligrams) of
food ingested during each observation session.
The quantity of food ingested was determined
after the residual food recovered at the bottom
of the tank was dried and weighed. The above
motor activities and feeding behaviors of both
treatment and control groups, estimated as
mean activity per 24 hr ± SE, were recorded
with a digital video camera (model TR 7000 E;
Sony, Tokyo, Japan) and elaborated at a per-
sonal computer (Microsoft Windows XP;
Microsoft Corp., Redmond, WA)) using
EthoLog software (version 2.2.5; Visual Basic,
São Paulo, Brazil) for behavioral analyses.

Amino cupric silver staining. To establish
whether abnormal behavioral activities were
related to neuronal damage, fish treated in the
same manner as in the behavioral study with
sublethal (n = 3) and MAT (n = 3) concentra-
tions of Cd and endosulfan were decapitated
and their brains quickly removed (within
30 sec) and stored at –40°C according to
common cryostat procedures for unfixed
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Figure 1. Assessment of effects of Cd and endosulfan on some motor activities of Thalassoma pavo: (A) hyperactive movements, (B) movements toward surface,
(C) feeding frequency, (D) quantity (mg) of food ingested, and (E ) hyperventilation activity. For these behaviors a sublethal concentration of endosulfan and Cd as
well as a MAT concentration of the two contaminants, respectively, were compared with controls. Values (means of activities/24 hr ± SE) of motor activities and
feeding behaviors were estimated daily during four 1-hr observations for 1 week, as described in “Materials and Methods.” The behavioral data were analyzed
by one-way ANOVA followed where necessary by post hoc Neuman-Keuls multiple-range test.
*p < 0.05; ***p < 0.001.
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brains (Canonaco et al. 1997). Brains were
mounted on a freezing stage of a sliding cryo-
stat (Microm-HM505E; Zeiss, Wallford,
Germany), and a serial set of representative
coronal sections (30 µm) was selected at an
interval of 240 µm for amino cupric silver

staining procedures according to previously
published methods (de Olmos et al. 1994); we
adapted the exposition time (25 min) to neu-
tral red for the different brain sections of our
fish species. This method, which has been used
mainly for mammalian brain studies, proved to

be appropriate for cerebral neuronal fields that
have undergone degeneration processes. The
brain sections were rinsed with distilled H2O,
placed into dishes containing the preimpreg-
nating solution (silver nitrate [AgNO3], dis-
tilled H2O, D,L-alanine, copper nitrate
[Cu(NO3)2], cadmium nitrate [Cd(NO3)2],
lanthanum nitrate [La(NO3)2], neutral red,
pyridine triethanolamine, isopropanol), heated
in a microwave oven (45–50°C) for 50 min,
and cooled at room temperature for 3 hr. The
sections were then rinsed in distilled H2O, and
after a quick rinse in acetone they were placed
in an impregnating solution AgNO3, distilled
H2O, ethanol, acetone, lithium hydroxide
(LiOH), ammonium hydroxide (NH4OH)]
for 50 min, followed by a 25-min fixation in a
reducer solution (formalin, citric acid monohy-
drate, ethanol, distilled H2O) at a temperature
range of 32–35°C. These sections were left
overnight in distilled H2O, and the next day
they were placed in a first bleaching solution
[potassium ferricyanide in potassium chlorate
solution, lactic acid] for 60 sec at room tem-
perature. Afterward, they were bleached in a
second bleaching solution (potassium perman-
ganate, sulfuric acid) for 60 sec and rinsed in
distilled H2O. For the stabilization phase, sec-
tions were transferred in sodium thiosulfate
solution and rinsed again in distilled H2O.
Finally, they were immersed in a rapid fixer
solution for 5 min and counterstained with
0.5% neutral red solution (Carlo Erba, Milan,
Italy) for 25 min, dehydrated in ethanol
(50–100%) and xylene, and mounted with
DPX (p-xylene-bis[N-pyridinium bromide];
Sigma) for observations with a bright-field
Dialux EB 20 microscope (Leitz, Stuttgart,
Germany). The effects of both neurotoxicants
on the argyrophilic reaction at the different
brain levels were compared with controls that
consisted of fish maintained under conditions
identical to those of the two treatment groups
except that only vehicle was added to the
tanks. Because the same negative results were
obtained at all brain levels, only two represen-
tative posterior areas were illustrated and com-
pared with the different brain areas of the two
treatment groups.

Effects of Cd and endosulfan on H1R–H3R.
The neurotoxic actions of Cd and endosulfan
were also correlated with the type of distribution
pattern of the HnR neuronal system. Fish
treated with the sublethal (n = 4) and MAT
(n = 4) concentrations of Cd and endosulfan
along with their control (n = 6) were used. The
brains were removed and quickly frozen for
storage at –40°C, and brain sections (14 µm
thick) were thawed, dried at room temperature,
and then handled according to in vitro binding
studies for mammals (Ryu et al. 1996) that
were adapted for fish brain sections (Peitsaro
et al. 2000). Briefly, we incubated sections in
150 mM sodium potassium phosphate buffer
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Figure 2. Photomicrographs showing the amino cupric silver staining pattern in rostral (i), middle (j), and
posterior (k) brain areas of the Thalassoma pavo, treated with a MAT concentration of (a–c) Cd or
(e–g) endosulfan. The effects of Cd (n = 6; arrows) were mostly observed in telencephalic and in mesen-
cephalic areas such as Dm2 (a) and in the piriform SGC neurons of the optic tectum (b), respectively, and
in the pretectal NGa (c), compared with control (n = 8); controls gave comparable results at all brain levels
for both neurotoxicants as described in “Materials and Methods,” and so these same controls (d, h) were
also used for the effects of endosulfan. In the case of endosulfan (n = 6), the major effects (arrows) were
detected in the interneurons of the entopeduncular nucleus (e) and in the preoptic NSC area (f) and
NLTm (g) of the hypothalamic lobe. 
Abbreviations: CP, central posterior thalamic nucleus; Dc2, central part of dorsal telencephalon, subdivision 2; Dl, lateral
part of the dorsal telencephalon; Dm2–Dm4, medial part of the dorsal telencephalon, subdivisions 2–4; DP, dorsal poste-
rior thalamic nucleus; E, entopeduncular nucleus; NAP, anterior periventricular nucleus; NAT, anterior tuberal nucleus;
NGa, anterior part of the nucleus glomerulosus; NH, habenular nucleus; NLTm, medial part of lateral tuberal nucleus;
NLTv, ventral part of lateral tuberal nucleus; NPGm, medial preglomerular nucleus; NPO, preoptic nucleus; NPP, posterior
periventricular nucleus; NSC, suprachiasmatic nucleus; NT, nucleus taenia; OT, optic tectum; POA, preoptic area; PSp,
parvocellular superficial pretectal nucleus; SCO, subcommissural organ; TLo, torus longitudinalis; VCe, cerebellum valvula;
VM, ventromedial thalamic nucleus; Vot, ventral optic tract; Vp, postcommissural nucleus of the ventral telencephalon.
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(Sigma) 2 mM MgCl2 and 100 µM dithio-
threitol pH 7.4 (Roche Diagnostic, Milan,
Italy) containing different concentrations
(0.5–20 nM) of [3H]-N-α-methyl-HA
(NAMH; PerkinElmer Life Sciences, Boston,
MA, USA). Some sections were incubated with
10 nM [3H]-NAMH using a wipe assay proce-
dure. This concentration displayed the greatest
affinity for HnR in the presence of the different
values (1 µM–1 nM) of the following specific
HA antagonists (Sigma): H1R antagonist pyril-
amine, H2R antagonist cimetidine, and H3R
antagonist thioperamide. Other sections were
incubated with 10 nM [3H]-NAMH plus
500 µM of their corresponding antagonist for
nonspecific binding values that proved to be
similar to that of the background; subse-
quently an autoradiographic film (Hyperfilm;
Amersham, Piscataway, NJ, USA) was
apposed to dried sections and to slides con-
taining plastic standards.

After an exposure period of 6 weeks (25°C),
we developed the autoradiographic films
according to previous methods (Canonaco
et al. 1997) and we evaluated the different
H1R–H3R binding densities, expressed in
femtamole per milligram wet tissue weight,
with a Panasonic Telecamera (objective lens
FD; 50 mm, 1:3.5; Canon, Milan, Italy)
attached to a Macintosh computer-assisted
image analyzer system running Scion-Image 2.0
(National Institutes of Health Image, Bethesda,
MD, USA). We stained labeled sections with
cresyl violet acetate to identify the diencephalic,
mesencephalic, and telencephalic brain regions,
using the perch fish atlas (Cerdá-Reverter et al.
2001a, 2001b).

Statistical analysis. For the receptor bind-
ing study, Scatchard analyses of saturation
binding data, which were fitted by a one-site
and/or two-site model [based on the signifi-
cance of extrasum squares using a LIGAND
program (Munson and Rodbard 1980)] sup-
plied relative affinity states and maximal
receptor binding densities. To compare behav-
ioral observations and histaminergic receptor

binding data, we compared the treatment
groups using a one-way analysis of variance
(ANOVA) when there was a significant
p-value ≤ 0.05, according to the Neuman-
Keuls multiple-range post hoc test.

Results

Behavioral analysis. Treatment of the ornate
wrasse with Cd and endosulfan accounted for
a net differentiation in the type of behavior
responses. The MAT concentration of both
stressors—11.32 mg/L and 1.3 µg/L, respec-
tively—induced stereotype motor behaviors
during the entire experimental session. Fish
treated with Cd at 11.32 mg/L exhibited
greater (p < 0.001; Figure 1A) hyperactive
swimming activities such as moving in only a
vertical direction and/or “bumping” against
each other or against the glass tanks, in con-
trast to controls, which were often inactive
and spent most of their time along the bottom
of the tank. Fish treated with a concentration
of 2.26 mg/L Cd displayed only moderate
stereotype behaviors (Figure 1B), including
hyperactive movements that consisted of
swimming mainly in a vertical direction
toward the surface of the water, whereas con-
trols exhibited more random movements.
Conversely, endosulfan caused a significant
increase of some hyperactive movements (p <
0.05; Figure 1A,B) such as swimming in a ver-
tical direction, whereas “bumping” type of
swimming behaviors occurred in a less signifi-
cant manner. This pesticide markedly reduced
feeding, even at the lower concentration
(0.2 µg/L). With both concentrations of endo-
sulfan tested, feeding behavior was irregular,
and overall, treated animals ate less food than
did controls (Figure 1C,D). The MAT con-
centrations of both contaminants caused an
excessive production of mucus on the opercu-
lum surface and, after 24 hr, hyperventilation
became increasingly more severe up to the end
of the study (Figure 1E).

Analysis of amino cupric silver–stained
tissue. From the amino cupric silver staining

analysis, it was possible to correlate these abnor-
mal behaviors with evident neurodegeneration
processes in telencephalic and mesencephalic
regions. In particular, a MAT concentration of
Cd supplied damaged external pyramidal neu-
ron, as exhibited by a typically argyrophilic dark
neuronal perikarya and often by a shrunken
and folded appearance compared with little or
no damage in controls (Figure 2d,h). This fea-
ture was limited mainly to the medial dorsal
part of the telencephalon, subdivision 2 (Dm2;
Figure 2a), and the pyramidal layer of the mes-
encephalic stratum griseum central (SGC;
Figure 2b), which showed consistent dark
axonal processes. The effects of Cd seemed to
extend to other areas of the brain, namely, the
anterior part of the nucleus glomerulosus
(NGa; Figure 2c) of the diencephalic pretectal
region that is involved, via mesencephalic cir-
cuits, with the regulation of visual motor func-
tions in teleosts (Kaslin and Panula 2001).
With endosulfan, substantial neurodegenera-
tion was present in ventral telencephalic regions
such as the entopeduncular nucleus (e;
Figure 2e) plus the diencephalic suprachias-
matic nucleus (NSC; Figure 2f) and the medial
part of lateral tuberal nucleus (NLTm;
Figure 2g). In these brain regions endosulfan
produced an altered pattern of neurons defined
as an “interrupted string of pearls” as noted
with degeneration of interneurons of mammals
(Siegel et al. 1999).

Effects of Cd and endosulfan on H1R–H3R.
When the regional distribution of HA receptors
was determined in the presence of Cd and
endosulfan, we observed a peculiar pattern of
histaminergic expressing neurons in the same
above brain regions of Thalassoma pavo. Such a
relationship was based on a similar optimal
[3H]-NAMH binding constant (Figure 3) in
both treated and control fish with respect to
that of rodents (unpublished data). Overall, the
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Figure 3. (A) A saturation curve of [3H]-NAMH binding (fmol/mg wet tissue weight ± SE), using wipe
assays, was determined for the preoptic area of the Thalassoma pavo treated with MAT concentrations of
Cd and endosulfan and compared with controls as described in “Materials and Methods.” (B) From the
linear Scatchard plot, the negative slope was calculated to provide the mean dissociation constant (nM),
whereas the intercept of the curve at the abscissa provided the maximal number of binding sites.
Evaluation of saturation-binding study supplied similar results in three separate trials.

200

150

100

50

0

4

3

2

1

0

BA

10 20 30

[3H]-NAMH (nM)

Sp
ec

ifi
c 

bi
nd

in
g 

le
ve

l
(fm

ol
/m

g 
w

et
 ti

ss
ue

 w
ei

gh
t) 

± 
SE

500 100 150 200 250

Sp
ec

ifi
c 

bi
nd

in
g 

le
ve

l/
[3 H

]-
N

A
M

H
 ±

 S
E

Specific binding level ± SE

Control (n = 6)
Cd (n = 4)
Endosulfan (n = 4)

Figure 4. Displacement curves of [3H]-NAMH (% of
total binding) in preoptic area of the Thalassoma
pavo (n = 6) were generated in the presence of dif-
ferent concentrations (1 µM to 1 nm) of cold NAMH
and of selective HA antagonists thioperamide,
pyrilamine, and cimetidine as described in
“Materials and Methods.” Each point represents
mean ± SE of three separate tests.

100

75

50

25

0
–9

[3 H
]-

N
A

M
H

 (%
 o

f t
ot

al
 b

in
di

ng
) ±

 S
E

Log [antagonist] M
–8 –7 –6 –5

NAMH
Thioperamide
Pyrilamine
Cimetidine



highest (> 140 < 200 fmol/mg wet tissue
weight) HA binding densities were shown to be
typical of rostral areas such as the preoptic
nucleus (NPO) as well as the torus longitudi-
nalis (TLo) and SGC of midbrain regions,
whereas lower (> 70 < 110 fmol/mg wet tissue
weight) binding densities were reported for the
central nucleus of the ventral telencephalon
and molecular stratum of the cerebellum.
Application of the selective HA receptor antag-
onists enabled us to demonstrate that it was the
diencephalic region that proved to be a prefer-
ential target of the major distribution differ-
ences of all subtypes (H1R–H3R), as displayed
by notable displacement capacities of these sub-
types in the preoptic area (Figure 4), as well as
high H1R and H2R levels in areas such as NPO
(45%) and in the nucleus of the saccus vasculo-
sus (NSV; 43%), respectively (Figure 5). The
subtype H3R was predominantly higher in
some regions and especially in Dm2 (45%) of
the telencephalon and in TLo (44%) of the
mesencephalon.

It is noteworthy that fish treated with a
MAT Cd dose showed a down-regulating effect
of H2R–expressing neurons, as displayed by the
low binding densities in some midbrain regions
of the representative autoradiograms (Figure 6).
Of all the regions examined, SGC (–115%; p <
0.001) and NGa (–90%) of the mesencephalon
(Figure 7A) seemed to contain the greatest
down-regulating activities of H2R-producing
neurons, whereas a moderate (p < 0.05) reduc-
tion was evident in the habenular nucleus (NH;
–45%). A similar reduction that appeared to be
also maintained for H1R-producing neurons
and precisely a very great and great (p < 0.01)
reduction of H1R levels in TLo (–105%) and
the central posterior thalamic nucleus (CP;
–65%), respectively, whereas a moderate up-
regulating activity was instead detected for
NLTm (+38%; Figure 7B). The subtype H3R
did not appear to be a major target of Cd
(Figure 7C) aside from the moderately higher
levels (+40%) obtained in the external cellular
layer (ECL) of the olfactory bulb.

The effects of endosulfan appeared instead
to be preferentially directed toward H3R-
producing neurons, as shown by the greater
binding densities in the representative autora-
diograms of midbrain regions (Figure 6b). The
diencephalic region (Figure 8A) provided very
great up-regulating effects, especially in the
NLTm (+110%) and the nucleus of the poste-
rior hypothalamic recess (NRP; +78%). By
contrast, greatly decreased levels were detected
in another hypothalamic area, that is, the ven-
tromedial thalamic nucleus (VM; –70%).
Moreover, the H1R-producing neurons of this
brain region were a preferred target for endo-
sulfan effects (Figure 8B), as indicated by the
greatly increased levels in the NSC (+68%)
plus moderately higher levels in the NSV
(+40%). Conversely, the other subtype (H2R)
did not prove to be a preferred target of this
pesticide (Figure 8C) despite the moderately
higher H2R levels in NPO (+60%).

Discussion

We describe here for the first time neuro-
toxicologic effects of the heavy metal Cd and
the insecticide endosulfan that are responsible
for abnormal motor and feeding behaviors
through histaminergic mechanisms in the
ornate wrasse. A first abnormal behavior con-
sisted of stereotype motor activities such as
swimming in a constant direction or “bump-
ing” against each other and/or against the glass
tank, especially when the fish were treated with
a MAT Cd concentration. These abnormal
behaviors, as reported previously for
Thalassoma pavo observed under field condi-
tions (Giusi et al. 2004) and in a wide variety
of fauna ranging from terrestrial vertebrates
such as rodents (Lafuente et al. 2001) to
aquatic species such as amphibians (James et al.
2004) and Chordata Ascidaecea (Bellas et al.
2001), should not be surprising because of
wide distribution of this heavy metal in the dif-
ferent ecosystems. This condition appears
mainly in aquatic communities because Cd
readily accumulates in the different tissues after

uptake via the calcium transport pathway of
gill’s chloride cells (Wood 2001), above all in
the olfactory structures that are considered to
be its preferential target (Tallkvist et al. 2002).
In this context the interference of such sensory
communicating structures in the ornate wrasse
may offset normal responses to olfaction-medi-
ated stimuli such as migration and physical
contact with other fish, which is in accordance
with the irregular responses to alarm signals as
well as modification of aggressive social rela-
tionships that have been reported in rainbow
trout treated with toxic Cd doses (Scott et al.
2003).

In pesticides both sublethal and MAT
concentrations of endosulfan caused abnormal
feeding behaviors, whereas altered swimming
movements were less evident than in Cd-
treated animals. As a consequence, the con-
sumption of food at an asynchronous rhythm
and at different time intervals is in good agree-
ment with other pesticides, accounting for
feeding difficulties via neuronal functional
hindrances in the goldfish (Bretaud et al.
2000). Similar difficulties obtained even under
sublethal concentrations tends to suggest that
sensorimotor threshold activities are suscepti-
ble to this contaminant, as shown by “startled”
motor behaviors being tightly associated with
the olfactory-dependent neuromediation of

Giusi et al.
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Figure 6. Representative binding autoradiograms
displaying distinct receptor densities (black line) of
H2R in the posterior regions of theThalassoma
pavo treated with a MAT concentration of Cd
(a; n = 4) and of H3R in the same brain regions of
animals that, instead, received a MAT concentra-
tion of endosulfan (b; n = 4), with respect to their
corresponding (e, f) controls (n = 6). Binding pat-
tern of these two subtypes appeared to be highly
specific as shown by very similar background lev-
els reported for [3H]-NAMH in presence of a 500×
concentration of the selective antagonists cimeti-
dine (c) and thioperamide (d), respectively, as
described in “Materials and Methods.”
Abbreviations: NAT, anterior tuberal nucleus; NGa, ante-
rior part of the nucleus glomerulosus; NLTm, medial part
of lateral tuberal nucleus; OT, optic tectum; TLo, torus
longitudinalis; VM, ventromedial thalamic nucleus.

Figure 5. Percentage binding levels (of total) ± SE of H1R, H2R, and H3R sites in diencephalic (A) and extra-
diencephalic (B) regions of the Thalassoma pavo (n = 6) were determined in the presence of their respec-
tive selective antagonists as described in “Materials and Methods.”
Abbreviations: Dm2, medial part of the dorsal telencephalon, subdivision 2; NPO, preoptic nucleus; NRP, nucleus of the
posterior hypothalamic recess; NSC, suprachiasmatic nucleus; NSV, nucleus of the saccus vasculosus; SGC, stratum gri-
seum central; TLo, torus longitudinalis; VM, ventromedial thalamic nucleus.
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optomotor responses such as predation, forag-
ing, and orientation toward food odor (Pan
and Dutta 1998). These olfactory-dependent
responses appear to be determining elements
for feeding behaviors throughout the various
biologic phases of the fish, as demonstrated by
both young and adult Japanese killifish being
neither attracted to nor able to consume food
after receiving similar endosulfan doses
(Gormley and Teather 2003).

When the toxicologic actions of both envi-
ronmental contaminants were assessed at the
structural level of the brain, notable neuro-
degenerative events were observed, as shown by
the diffused amino cupric silver staining of
neurons in the different brain regions. With
this method it was possible not only to imme-
diately and clearly detect the precise location of
neuronal trauma (Siegel et al. 1999) but also to
distinguish between somata and axonal damage
in some diencephalic, mesencephalic, and
telencephalic sites of Thalassoma pavo. Of the
brain regions exposed to MAT Cd concentra-
tions, the telencephalic Dm2 displayed the
greatest axonal fiber damage and interstitial
edema. This condition fits nicely with the infil-
tration properties of the heavy metal in mam-
malian telencephalic regions such as the
hippocampus (Mendez-Armenta et al. 2001),
which is involved in analogous functions such

as learning, spatial memory, and motor behav-
iors that are controlled by Dm2 in fish
(Portavella et al. 2004). Even SGC and NGa
of mesencephalic and pretectal areas, respec-
tively, which are related to the modulation of
multisensorial inputs (visual, acoustic, and
electroreceptive signals), supplied perturbed
dendritic spine formation and deformed soma
in a fashion similar to that of mesencephalic
trigeminal neurons of rodents exposed to Cd
(Yoshida 2001). The effects of endosulfan were
instead involved mainly with axonal deforma-
tions of interneurons in diencephalic areas such
as NSC and preoptic area of the hypothala-
mus, an effect that tends to overlap cellular
alterations and interstitial infiltration events
induced by the pesticide carbofuran in teleosts
(Ram et al. 2001). Ram et al. (2001) also
showed that such a contaminant was responsi-
ble for a reduction in number and size of
neurons and consequently altered neurotrans-
mission functions in this same brain region.

Interestingly, the neuronal alterations pro-
voked by both environmental contaminants in
the present study seemed to coincide with
changes of the histaminergic transcriptional
activities in some telencephalic and mesen-
cephalic regions and in the anterior and
posterior areas of the hypothalamus. The
hypothalamic area is considered to be a key

production site of HA not only in mammals
(Pillot et al. 2002) but also in amphibians
(Airaksinen and Panula 1990) and in some fish
species such as the zebrafish (Kaslin and Panula
2001). Because toxicologic effects of Cd and
endosulfan occur in distinct and localized brain
regions seems to support strongly a behavior-
linked relationship of these neurotoxins, as
demonstrated by Cd being preferentially
directed toward the motor-controlling cerebral
regions and endosulfan being involved pre-
dominantly on endocrine-dependent activities
of hypothalamic areas. The effects of Cd
exposure on pretectal and tegmental areas are
characterized primarily by a down-regulatory
activity of H2R-expressing neurons, whereas a
similar activity of H1R-expressing neurons was
detected for TLo and CP. Moreover, on the
basis of the low levels of H2R occurring not
only in key motor telencephalic areas but also
in mesencephalic and cerebellar regions of the
mormyrid electric fish (Han et al. 2000) and of
other vertebrates (Minami et al. 2001), it
appears that a down-regulation of this subtype
might represent an important condition of the
histaminergic inhibitory effects on locomotor
behaviors (Santos et al. 2003). The inhibitory
effects may be accomplished by the regulation
of parameters such as swimming velocity, loca-
tion of objects, and overall vestibular activities

Figure 8. The effects of both sublethal and MAT concentrations of endosulfan on H3R (A), H1R (B), and H2R (C ) with respect to their controls (n = 6) were
expressed as a percentage binding level ± SE in the different brain regions of the Thalassoma pavo, as described in “Materials and Methods.” The levels were
compared using one-way ANOVA followed where necessary by a post hoc Neuman-Keuls multiple-range test.
*p < 0.05; **p < 0.01; ***p < 0.001. Abbreviations: CP, central posterior thalamic nucleus; Dm2, medial part of the dorsal telencephalon, subdivision 2; NH, habenular nucleus; NLTm, medial
part of lateral tuberal nucleus; NPO, preoptic nucleus; NRP, nucleus of the posterior hypothalamic recess; NSC, suprachiasmatic nucleus; NSV, nucleus of the saccus vasculosus; SGC,
stratum griseum central; TLo, torus longitudinalis; VM, ventromedial thalamic nucleus.
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Figure 7. The effects of both sublethal and MAT concentrations of Cd on H2R (A), H1R (B), and H3R (C) with respect to their controls (n = 6) were expressed as a
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*p < 0.05; **p < 0.01; ***p < 0.001.
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that are controlled by these same brain regions
(Meek 1990; Xue et al. 2003).

Conversely, endosulfan appeared predomi-
nantly to promote enhanced levels of H3R-
expressing neurons mainly in hypothalamic
areas such as NLTm and NRP as well as of
H1R-expressing neurons in NSC. This relation-
ship appears to be strengthened by decreased
swimming and feeding behaviors obtained
immediately (after 2 hr) in the Chinook salmon
when treated with the organophosphate pesti-
cide diazinon (Scholz et al. 2000). The finding
that the diencephalic region is a major target of
pesticide toxic effects should not be surprising
because polychlorinated biphenyls interfere
with other hypothalamic activities, including
the regulation of body temperature and the
activities of the hypothalamic–pituitary–
gonadal circuits, with severe consequences on
reproductive and hormone-releasing activities
(Bloomquist 2003; Cooper et al. 2000). It is
noteworthy that high levels of H3R-expressing
neurons have been correlated with a reduction
of food intake through the suppression of
appetite and energy expenditure in the same
hypothalamic areas (Takahashi et al. 2002). In
addition, the high levels of H1R-expressing
neurons in other hypothalamic sites of the
ornate wrasse plus the inhibition of these sub-
types accounting for improved feeding habits in
the goldfish (Spieler et al. 1999) appear to be
consistent with an important inhibitory role of
H1R and H3R, at least in hypothalamic nuclei
of this teleost.

In conclusion, these results provide direct
evidence that the toxicologic risks of endosul-
fan and Cd on the motor and feeding behavior
of Thalassoma pavo, as shown by evident mor-
phologic neuronal damages and distinct HnR-
expressing patterns, appear to be very strongly
correlated with histaminergic neurosignaling
mechanisms. Although most research to date
has mostly considered the physiologic risks of
the environmental toxicants, here we show that
the abnormal behaviors could be linked to spe-
cific HA subtype interactions operating in
some cerebral regions, at least in the ornate
wrasse. Consequently, the motor activities
appear to be tightly linked to Cd via variations
of mainly H2R-expressing neurons in the mes-
encephalic and telencephalic regions, whereas
modified feeding behaviors induced by endo-
sulfan seem to be related to the differences of
H1R- and H3R-expressing neurons mainly in
hypothalamic areas. We are still at the begin-
ning of this research, but molecular neuronal
interests directed toward the role of environ-
mental disruptors on aquatic organisms could
provide further insights regarding not only the
behavioral hazards of these contaminants but
also neurotoxic mechanisms operating during
the entire development cycle of fish, with the
intent of minimizing ecologic and commercial
risks of this very important class of vertebrates.
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